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Mean Field Games As a Model For Liquidity On Financial Markets
Motivation: Recent Evolution of Financial Markets Put The Focus on Liquidity

Before the financial crisis (A “Haute Couture” Business Model)
I Products were sophisticated and highly customized
I Intermediaties (brokers, banks, etc) needed to keep large inventories (and hence hosted a lot of risk)

Since the financial crisis (mass market)
I Products are simpler and standardized
I Regulators demand for lower inventories (G20 Pittsburgh 2008)

⇒ Intermediaries turned to an flow-driven business.

⇒ Liquidity is an important issue for regulators, intermediaries, and their clients.

Moreover, regulators want more transparency (for less information asymmetry between intermediaries and
their clients), hence they promote electronic, multilateral trading.
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Basics of Financial Auction Games
Use Automated Trading in The Financial Industry

I More products can be traded electronically every year (in Europe
MiFID 2 – Jan 2018– pushes fixed income products to electronic).

I Humans use a collection of automated trading algorithms and have
to monitor them instead of interacting directly with auction
mechanisms; the monitoring and human – machine interfaces
are very important (see [Azencott et al., 2014]).

I These algorithms are explicitly parametrized by their utility
function when they are used by dealing desks (Implementation
Shortfall, Percentage of Volume, Volume Weighted Average Price,
Smart Routing, Liquidity Seeking, etc).

I The ones used by prop traders and market makers are more based
on ad hoc mixes of signals and risk control micro-strategies (cf.
[L. and Neuman, 2017] for an attempt of modelling).

I Operational risk (including code architecture, online learning –like
in [Laruelle et al., 2013] – and deployment mechanisms) is an
important topic.
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Basics of Financial Auction Games
Principles of the Auctions on Financial Markets

+ Principal – Agent

Bilateral Trading
Each client face one Market
Maker. He asks for quotes
(bid ask prices and
quantities), and the market
maker adjusts her prices to
the level of information
(toxicity) of this particular
client.

+ Mean Field Game

Multilateral Trading
Several (anonymous)
market makers and their
clients trade in the same
pool, all competing for
liquidity.
Price is dynamically set so
that buyers with low prices
match seller with high
prices.
(real-time Walrassian
mechanism).

See [L. and Laruelle., 2018a] for details.
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Basics of Financial Auction Games
Two Main Mechanisms For Multilateral Trading

At the finest scale: Orderbooks

Illustration from [L., Mounjid and Rosenbaum., 2018b]

At a mesoscopic scale (∼5min)

Illustration from [Bouchard et al., 2011]

For 20 years [Almgren and Chriss, 2000], financial Mathematics developped stochastic-control frameworks

to optimize the strategy of one trader in front of a background noise . Interactions with others are is reduced
to

I a model for price reaction to buying or selling pressure (i.e. a market impact model);
I a martingale “innovation” rendering the aggregated behaviour of (a priori) independent other players.
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Mean Field Games For Liquidity Games
Market Liquidity Satisfies Most of the Needed Properties of the “Mean Filed” of MFG

MFG

I A continuum of players
I implementing stochastic control
I with a cost function incorporating functionals of the

repartition of all players (i.e. the “mean field”)

→ You demand anonymity, and you obtain a Nash
equilibrium

See seminal papers by Lasry and Lions, and simultaneous
papers by Caines, Huang and Malhamé, have a look at
[Bensoussan et al., 2016] for the LQ case.

Liquidity on financial markets

I Market participants’ buying and selling is
expressed in terms of “I (would like to) trade
up to this quantity at this price”.

I The aggregation of all these intentions is a
mean field, and the traded price is a function
of this mean field

I Participants’ costs for sure are function of this
current price.

→ Let’s write this as a MFG

In short: consider the trajectories of a continuum of agents, each of them described by a typical controlled
stochastic processes Xt , the control minimizes a criterion involving the distribution mt of all agents:

dX = b(t ,Xt , αt ) dt + σ(t ,Xt ) dW , X0 = x0

αt = arg mina IE
∫ T

s=t {L(Xs, αs) + f (Xs,ms)} ds + g(XT ,mT ), Xt = x
Law(Xt ) ∼ mt
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Mean Field Games For Liquidity Games
Some Papers are Available

This talk is based on two examples of the use of MFG to model liquidity on financial markets:
I at the high frequency time scale (orderbooks dynamics): Efficiency of the Price Formation Process in

Presence of High Frequency Participants: a Mean Field Game analysis [Lachapelle et al., 2016]
I at a mesoscopic time scale (optimal trading in presence of multiple players): Mean Field Game of Controls

and An Application To Trade Crowding [Cardaliaguet and L., 2017]

It is worthwhile to note that these two problems have been explored: in front of a background noise
I in [L. and Mounjid, 2016] and [L., Mounjid and Rosenbaum., 2018b] for the first one;
I and in a series of papers by Cartea and Jaimungal [Cartea et al., 2015] for the second one (that is a

derivation of the initial Almgren and Chriss framework).

Other papers do explore similar mechanisms, like [Carmona et al., 2013] and [Jaimungal et al., 2015] or
[Firoozi and Caines, 2016] (the two latters are close to Cardaliaguet-L.).
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A Mean Field Game Model for One Queue of the Orderbook
The Setup

I Sellers only,
I one agent i arrives in “the game” at t according to a Poisson

process N of intensity λ,
I it compares the value to wait in the queue (y(x), where x is the

size of the queue) to zero to choose to wait in the queue (when
u(x) > 0) or not, its decision is δi

I the queue is consumed by a Poisson process Mµ(x) of
intensity µ(x),

I in case of transaction, a “pro-rata” scheme is used
(“equivalent” to infinitesimal possibility to modify orders): q/x
of the order is part of it; can be relaxed for FIFO.
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A Mean Field Game Model for One Queue of the Orderbook
Dynamics, Controls and Cost Functions

The Mean Field is the size of the queue (it is a forward process):

dxt = q
(

dN j
t δ

j − dMµ(xt )
t

)
, remark: j = N, I could have written dNtδ

N .

The Value function the i th agent wants to minimize is driven by the following running cost

dJ(xt ) =

[
q
xt

P(xt ) + (1−
q
xt

)J(xt − q)

]
dMµ(x)

t − cq dt .

u(x) := IE
∫ T

t0
dJ(xt ),

and its control δi is to choose to be submitted to this cost function or to pay zero at t0:

U i (x) := max
δi∈{0,1}

δi u(x).

The optimal decision δi is the solution of the backward associated dynamics.
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A Mean Field Game Model for One Queue of the Orderbook
Solution for a specific form of µ(x)

At queue sizes x∗ such that

x∗ = µ(x∗)P(x∗)/c

the sign of u changes.
Moreover, for the specific case

µ(x) = µ1δx<S + µ2δx≥S

There is a point strictly before S where u
switches from negative to positive. It means
that participants anticipate service
improvement.

This chart has to be compared to the left
Panel of Slide 30, Peter Tankov’s talk
(yesterday) on Mean field games of optimal
stopping: a relaxed control approach.
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A MFG of Two Interacting Queues

The decision-taking process will follow this mechanism:

I consuming liquidity allows to obtain quantity immediately but at an
impacted price, with respect to the liquidity available in the book,

I each time a market participant has to take a buy or sell decision, he
tries to anticipate the “long term” value for him to be liquidity provider or
liquidity consumer,

I each market participant can use a SOR (Smart Order Router
[Foucault and Menkveld, 2008]) for this sophisticated valuation,
otherwise he will just consume liquidity.
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A MFG of Two Interacting Queues
Model details

• Orders arrive at Poisson rate Λ = λ+ λ−

• strategic arrivals: λ, non-optimal: λ− (can be read as “SOR” on “non-SOR” participants)

• (Qa,Qb) := number of orders on ask and bid sides

• Value functions: u(Qa,Qb) for sellers and v(Qa,Qb) for buyers

• Matching process for any quantity Q: Qq/Qa

• Transaction price:

pbuy(Qa) := P +
δq

Qa − q
, psell(Qb) := P −

δq
Qb − q

where: q is the order size, δ is the market depth, P is the fair price

• cost to maintain inventory: ca and cb
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Decision process

• If u(Qa
t + q,Qb

t ) > psell(Qb
t ), it is more valuable to route the sell order to the ask queue→ Liquidity

Consumer (LC) order

• If v(Qa
t ,Q

b
t + q) < pbuy(Qa

t ), it is more valuable to route the buy order to the bid queue→ Liquidity Provider
(LP) order

———————————————————————————

• Notations of the routing decisions:

R⊕buy(v ,Qa
t ,Q

b
t + q) := δv(Qa

t ,Q
b
t +q)<pbuy(Qa

t ), LP buy order

R⊕sell(u,Qa
t + q,Qb

t ) := δu(Qa
t +q,Qb

t )>psell(Qb
t ), LP sell order

R	buy(Qa
t ,Q

b
t ) := 1− R⊕buy(Qa

t ,Q
b
t ), LC buy order

R	sell(Qa
t ,Q

b
t ) := 1− R⊕sell(Qa

t ,Q
b
t ), LC sell order is processed
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The Model in Detail

The 2D mean field is the size of the two queues (Qa
t ,Q

b
t ); it evolves according to the forward dynamics (j, k , `

are strategic ask providing, strategic ask consuming, and blind ask consuming agents):

dQa
t =

(
dNλsell(j)

t R⊕sell(j)︸ ︷︷ ︸
δj

−(dN
λbuy(k)

t R	buy(k)︸ ︷︷ ︸
δk

+dNλ
−(`)

t )
)
q,

and for the cost function at the ask:

dJu(Qa,Qb) =

[
q

Qa
pbuy(Qa) +

(
1−

q
Qa

)
Ju(Qa − q,Qb)

]
(dN

λbuy(k)

t R	buy(k)︸ ︷︷ ︸
δk

+dNλ
−(`)

t )− caq dt .

Again, with T large enough, u(Qa,Qb) = IE
∫ T

t=0 J(Qa
t ,Q

b
t ) dt given Qa

0 = Qa,Qb
0 = Qb , and

U(Qa,Qb) := max
δi∈{0,1}

δi u(Qa,Qb) + (1− δi )psell(Qb).

The control δi is thus the result of a backward process.
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One of the Results: Four regions

Four mixes of LC and/or LP agents:

Sellers and buyers are Liquidity Providers

R++= {(x , y),R⊕s (x , y) = R⊕b (x , y) = 1},

Sellers and buyers are Liquidity Consumers

R−−= {(x , y),R	s (x , y) = R	b (x , y) = 1},

Sellers provide liquidity and buyers consume it

R+−= {(x , y),R⊕s (x , y) = R	b (x , y) = 1},

Sellers consume liquidity and buyers provide it

R−+= {(x , y),R	s (x , y) = R⊕b (x , y) = 1}.
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MFG For Oderbook Dynamics
Outcomes of the modelling

The Liquidity Game

I It is possible to write properly the value of one limit order in
a book (and to obtain its stationarized value);

I In the MFG model with one type of agent only, liquidity
imbalance can be stable, it is in contradiction with some
empirical findings;

I But if we mix trading speeds, no imbalance is stable
anymore (see the paper).

The results are compatible with empirical studies ([Gareche et al., 2013],
[Huang et al., 2015]; see [Bouchaud et al., 2018] for more details).

This model focuses on the Liquidity Game: traders compete for liquidity,
while there is no (exogenous, i.e. fundamental) reasons for a price
change. In reality, such a situation alternates with price focussed
sequences; see [Huang et al., 2015].
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MFG of Controls and An Application To Trade Crowding
Motivation

Once they took the decision to update their portfolios, asset managers (think about a pension fund) have to go on
markets to buy or sell the corresponding number of shares or contracts.

I the common (good) practice is that all the portfolio managers send their instructions to the dealing desk of
their company;

I The job of this team is to “time” the execution of these large orders:

– if they go too fast, the trading pressure will more the prices an unfavourable way (market impact),

– if they go too slow, they will miss the “good opportunity” to buy or sell.

→ hence they main goal is to adjust their trading speed in real time.
I That for, they build and use trading algorithms (theirs or the ones of their brokers) to interact with market an

optimized way.
I Each algorithm is parametrized thanks to standardized cost functions.

Trading algorithms implementations are inspired by the same formalism we will use here (books are widely
available: [Guo et al., 2016], [Cartea et al., 2015], [Guéant, 2016] and [L. and Laruelle., 2018a]).
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MFG of Controls and An Application To Trade Crowding

A continuum of agents trading optimally “à la Cartea-Jaimungal”.

dSt = αµt dt + σ dWt .

(1) dQa
t = νa

t dt ,

now for a seller, Qa
0 > 0 (the associated control νa will be mostly negative) and the wealth suffers from linear

trading costs driven by κ (or temporary, or immediate market impact):

dX a
t = −νa

t (St + κ · νa
t ) dt .

Same equations as for the standard framework, except the trend is made of the permanent impact of all
agents:

µt =

∫
a∈A

νa
t dm(a),

where f (a) is the density of the agents in a feature space A.
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From Cost Function to HJB

The cost function of investor a selling from t = 0 and T is similar to the ones used in [Cartea et al., 2015]: the
terminal inventory is penalized and a quadratic running cost is subtracted:

V a
t := sup

ν
IE

(
X a

T + Qa
T (ST − Aa · Qa

T )− φa
∫ T

s=t
(Qa

s )2 ds
∣∣∣Ft

)
.

Here we took T common to all investors, i.e. the end of the trading day.

Our framework is then
I Each agent a has an initial quantity Qa

0 to buy (Qa
0 < 0) or to sell (Qa

0 > 0) we can even have purely
opportunistic agents (Qa

0 = 0).
I They all start at the open of the trading session t = 0 and end at the close t = T .
I Each of them maximizes the value of his trades for the day: cash + penalized remaning quantity (by Aa) -

cost of risk (with his own risk aversion φa).
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HJB For One Player (Backward Value Function)

The associated Hamilton-Jacobi-Bellman is

0 = ∂t V a − φa q2 +
1
2
σ2∂2

SV a + αµ∂SV a + sup
ν

{
ν∂QV a − ν(s + κ ν)∂X V a} ,

with the terminal condition V a(T , x , s, q;µ) = x + q(s − Aaq). The usual solution: Following the Cartea and
Jaimungal’s approach, we will use the following ersatz: V a = x + qs + va(t , q;µ). Thus the HJB on v is

−αµ q = ∂t va − φa q2 + sup
ν

{
ν∂Qva − κ ν2

}
,

with the teminal condition va(T , q;µ) = −Aaq2.

The associated optimal feedback / control is straightforward to find:

(2) νa(t , q) =
∂Qva(t , q)

2κ
.

⇒We know that if we have the value function of an agent v , we can deduce the associated optimal control.

CA Lehalle 20 / 24



CFM

Transport of the Mass of the Players (Forward)

Distribution of agents is mainly defined by the joint distribution m(t , dq, da) of

I the inventory Qa
t , with known initial values.

I the preferences of the agent: the risk aversion φa, and the terminal penalization Aa.

The net trading flow µ driving the trend of the public price at time t reads:

µt =

∫
(q,a)

νa
t (q) m(t , dq, da) =

∫
q,a

∂Qva(t , q)

2κ
m(t , dq, da).

⇒ va is an implicit function of µ (look at the HJB), meaning we will have a fixed point problem to solve in µ.

By the dynamics of Qa
t , the transport of the measure m(t , dq, da) has to follow (continuity equation)

∂t m + ∂q

(
m
∂Qva

2κ

)
= 0 with initial condition m0 = m0(dq, da).
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Obtaining The Backward-Forward Dynamics

Now we can have side to side:
I the HJB (backward) PDE where we plug the value of µ;
I the (Forward) transport of the mass of agents m, driven by the aggregation of their instantaneous decisions.

−αq
∫

(q′,a′)

∂Qva′ (t , q′)
2κ

m(t , dq′, da′)︸ ︷︷ ︸
aggregate of all agents

= ∂t va − φa q2 +
(∂Qva)2

4κ︸ ︷︷ ︸
optimal for one agent

∂t m + ∂q

(
m ∂Qva

2κ

)
= 0

Under boundary (resp. initial and terminal) conditions: m(0, dq, da) = m0(dq, da) ,

va(T , q;µ) = −Aaq2 , ∀a.
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Explicit Solution For a Special Case
Same preferences for all agents: φa ≡ φ, Aa ' A

We will need a notation for the aggregated (i.e. net) position of all agents E(t) =

∫
q

q m(t , dq).

Then we can write:

E ′(t) =
∫

q q∂t m(t , dq) ← definition

= −
∫

q q∂q

(
m(t , q)

∂Qv(t,q)
2κ

)
dq ← forward dynamics (transport)

=
∫

q
∂Qv(t,q)

2κ m(t , dq) ← integration by parts.

Moreover, v(t , q) can be expressed as a quadratic function of q: v(t , q) = h0(t) + q h1(t)− q2 h2(t)
2 , leading to:

E ′(t) =

∫
q

m(t , q)

(
h1(t)
2κ
−

h2(t)
2κ

q
)

dq =
h1(t)
2κ
−

h2(t)
2κ

E(t).

In a more compact form:
2κE ′(t) = h1(t)− E(t) · h2(t).
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Dynamics For Identical Preferences

You inject h0, h1 and h2 in your control PDE tool and you collect all the obtained ODEs:

(3a)

(3b)

(3c)

(3d)


4κφ = −2κh′2(t) + (h2(t))2,

αh2(t)E(t) = 2κh′1(t) + h1(t) (α− h2(t)) ,

− (h1(t))2 = 4κh′0(t),

2κE ′(t) = h1(t)− h2(t)E(t).

with the boundary conditions h0(T ) = h1(T ) = 0, h2(T ) = 2A, E(0) = E0, where E0 =
∫

q qm0(q)dq is the net
initial inventory of market participants (i.e. the expectation of the initial density m).

The Main Equation For Identical Preferences

The previous system of ordinary differential equations implies

(4) 0 = 2κE ′′(t) + αE ′(t)− 2φE(t)

with boundary conditions E(0) = E0 and κE ′(T ) + AE(T ) = 0.
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Solving The Mean Field

Closed form for the net inventory dynamics E(t)

For any α ∈ R, the problem (4) has a unique solution E , given by

E(t) = E0a (exp{r+t} − exp{r−t}) + E0 exp{r−t}

where a is given by

a =
(α/4 + κθ − A) exp{−θT}

−α2 sh{θT}+ 2κθch{θT}+ 2Ash{θT}
,

the denominator being positive and the constants r±α and θ being given by

r± := −
α

4κ
± θ, θ :=

1
κ

√
κφ+

α2

16
.
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Solving the Control

Solving h2(t)

h2 solves the following backward ordinary differ-
ential equation (3a): 0 = 2κ · h′2(t) + 4κ · φ −
(h2(t))2 under h2(T ) = 2A. It is easy to check
the solution is

h2(t) = 2
√
κφ

1 + c2ert

1− c2ert
,

where r = 2
√
φ/κ and c2 solves the terminal

condition. Hence

c2 = −
1− A/

√
κφ

1 + A/
√
κφ
· e−rT .

Keep in mind the optimal control is

ν∗ =
∂Qv(t , q)

2κ
=

h1(t)
2κ
− q ·

h2(t)
2κ

,

Solving h1(t)

The affine component of the control can be eas-
ily deduced from h2(t) and E(t):

h1(t) = 2κ · E ′(t) + h2(t) · E(t).
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Qualitative Meaning of All This
(Back To Identical Preferences To Ease The Writing)

Dependence of the Solution to the Mean Field

The optimal control is

ν∗ =
∂Qv(t , q)

2κ
=

h1(t)
2κ︸ ︷︷ ︸

reaction to
the mean field

− q ·
h2(t)
2κ︸ ︷︷ ︸

inventory
control

.

I The second term is proportional to your inventory, i.e; the remaning quantity to buy/sell,
it is independent of E ;

I The first term embeds the dependence to the mean field : h1(t) = 2κ · E ′(t) + h2(t) · E(t).

⇒ locally you adapt your behaviour to the mean field via h1,

→ then (you changed your inventory), you slowly (re)adapt to be ready for boundary conditions / costs.
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The Standard Case

0 1 2 3 4 5
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E(t), E0 = 10.00, α = 0.400
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T = 5.00, A = 2.50, κ = 0.20, φ = 0.10

h2(t)

−h1(t)

Dynamics of E (left) and −h1 and h2 (right) for a standard set of parameters: α = 0.4, κ = 0.2, φ = 0.1,
A = 2.5, T = 5, E0 = 10.
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Conclusion

A topic of paramount importance for financial participants is liquidity .

I In a lot of cases, liquidity can be seen as a mean field in the sense of the MFG
I Financial mathematics traditionally uses stochastic control to exhibit optimal strategies for an isolated

market participant in front of a “background noise”.

+ Mean Field Games naturally extends this kind of frameworks to take into account the dynamics of liquidity
driven by other players trying to be optimal too.

I The obtained results ar of interest for

— intermediaries (banks, brokers, insurance companies, etc)

— asset managers

— regulators.

I This kind of MFG can be considered as a way to obtain robust control
I It is possible to embed partial information and learning.
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Thank You For Your Attention

To submit papers:
Market Microstructure and Liquidity .

More on market microstructure:
Market Microstructure in Practice by C.-A.
L and Sophie Laruelle (World Scientific
Publisher, 1s ed. 2013, 2nd ed. 2018).
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Learning The Mean Field

Setup:

I rounds are days, the number of rounds n increases
I m(0, da, dq) stays (almost) the same every day

Agents:

I each agent has his own view on the aggregated trading speed µ ; µa,n

I he implements the “optimal” strategy using µa,n in place of the true µ
I the effective aggregation of speeds is then mn+1 during this round
I each agent estimates it with an error
I and updates his view for the next round using a “memory” parameter:

µa,n+1(t) := (1− πa,n+1)µa,n(t) + πa,n+1(mn+1(t) + εa,n+1(t)),

where ε is a bounded “observation error”.
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Dynamics of the Learning “Procedure”

When agent a “believes” that the mean filed will be µa,n for today, she can compute hers optimal control:

ha,n
1 (t) = α

∫ T

t
eθ

a(t−s) µa,n(s) ds, ha
2 = 2κθa.

Hence the effective mean field will in reality be the aggregation of such trading speeds (i.e. controls):

mn+1(t) =
1

2κ

{∫
a

ha,n
1 (t) m̄0(da)−

∫
a

ha,n
2 Ea,n(t) m̄0(da)

}
.

That can be written to see the previous estimation of each agent:

mn+1(t) =
α

2κ


∫ T

t
ds
∫

a
µa,n(s) eθ

a(t−s)m̄0(da)−
∫ t

0
dτ
∫ T

τ
ds
∫

a
µa,n(s) eθ

a(2τ−t−s)θam̄0(da)


−
∫

a
θae−θ

a t Ea
0 m̄0(da).
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Solving the Learning Game

Now each agent updates her belief for tomorrow:

µa,n+1(t) := (1− πa,n+1) µa,n(t) + πa,n+1( mn+1(t) + εa,n+1(t)).

If you express:
sup

a

∣∣|µa,n − µ
∣∣ |∞ ≤ · · · .

and provided πa,n goes to zero fast enough (1/n), you obtain a law of large numbers:

Convergence of the incomplete information game

Within such a setup, this learning game converges towards its perfectly informed version:

limsup sup
a

∣∣|µa,n − µ
∣∣ |∞ ≤ C

∣∣|εa,·∣∣ |∞.
It is probably possible to obtain a CLT...

CA Lehalle 24 / 24


	Motivation And Main Principles: Why I Believe MFG Are Perfect For Liquidity Modelling
	How to Design a MFG For Orderbook Dynamics: Liquidity Formation
	How to Design a MFG At a Mesoscopic Scale: Optimal Trading and Crowding
	Appendix

